Finite element approximation of high-dimensional transport-dominated diffusion problems
نویسنده
چکیده
High-dimensional partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the computational challenge of beating the exponential growth of complexity as a function of dimension is exacerbated by the fact that the problem may be transport-dominated. We develop the analysis of stabilised sparse finite element methods for such high-dimensional, non-self-adjoint and possibly degenerate partial differential equations.
منابع مشابه
Sparse Finite Element Approximation of High-dimensional Transport-dominated Diffusion Problems
We develop the analysis of stabilized sparse tensor-product finite element methods for high-dimensional, non-self-adjoint and possibly degenerate second-order partial differential equations of the form −a : ∇∇u + b · ∇u + cu = f(x), x ∈ Ω = (0, 1) ⊂ R, where a ∈ Rd×d is a symmetric positive semidefinite matrix, using piecewise polynomials of degree p ≥ 1. Our convergence analysis is based on ne...
متن کاملA positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains
A new high-resolution scheme is developed for convection–diffusion problems in domains with moving boundaries. A finite element approximation of the governing equation is designed within the framework of a conservative Arbitrary Lagrangian Eulerian (ALE) formulation. An implicit flux-corrected transport (FCT) algorithm is implemented to suppress spurious undershoots and overshoots appearing in ...
متن کاملA new approach to enforcing discrete maximum principles in continuous Galerkin methods for convection-dominated transport equations
This paper presents a set of design principles and new algorithmic tools for enforcing maximum principles and/or positivity preservation in continuous finite element approximations to convection-dominated transport problems. Using a linear first-order advection equation as a model problem, we address the design of first-order artificial diffusion operators and their higherorder counterparts at ...
متن کاملAn Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005